Потери электроэнергии учитываются при проектировании развития электрических сетей как составная часть сопоставительных затрат при оценке вариантных решений, а потери мощности – для оценки максимума нагрузки.
Появление в последние 10–12 лет вынужденных неоптимальных режимов работы электростанций, сокращение отпуска электроэнергии в сеть, увеличение реверсивных перетоков мощности по электрическим сетям и ряд других причин привели к увеличению относительных (от отпуска электроэнергии в сеть) и абсолютных потерь электроэнергии. Так, если в 1991 г. относительные потери электроэнергии в сетях общего пользования России составляли 8,35 %, то в последующие годы они возросли и составили (%):
1998 г. |
1999 г. |
2000 г. |
2001 г. |
2002 г. |
2003 г. |
||
12,3 |
12,7 |
12,75 |
13,1 |
13,0 |
13,15 |
||
В отдельных энергосистемах эта величина колеблется в значительных пределах (от 6–7 до 14–15 %) в зависимости от территории обслуживания энергосистемы (сетевого района), плотности нагрузки, построения сети, количества ступеней трансформации, режимов работы электростанций и других факторов.
Ориентировочные значения потерь в сетях различных напряжений в процентах от суммарного поступления электроэнергии в сети приведены ниже.
Напряжение, кВ |
750-500 |
330-220 |
150-110 |
35-20 |
10-6 |
0,4 |
Потери, % |
0,5-1,0 |
2,5-3,5 |
3,5-4,5 |
0,5-1,0 |
2,5-3,5 |
0,5-1,5 |
Указанными значениями можно пользоваться при составлении предварительного баланса электроэнергии по системе. При составлении предварительного баланса мощности потери мощности могут быть определены делением потерь электроэнергии на время потерь, которое для современных систем с достаточной степенью точности можно принимать в пределах 3500-4500 ч.
Потери электроэнергии подразделяются на условно-переменные (нагрузочные) и условно-постоянные (холостого хода). В составе переменных учитываются потери в активном сопротивлении проводов линий электропередачи и обмоток трансформаторов, в составе постоянных – потери в стали трансформаторов, в шунтовых конденсаторных батареях, синхронных компенсаторах, реакторах. Ориентировочная структура потерь по элементам показана в табл. 2.17.
Таблица 2.17
Структура потерь электроэнергии, %
Элементы сети |
Потери |
||
Переменные |
Постоянные |
Всего |
|
Линии электропередачи |
55 |
10 |
65 |
Подстанции |
15 |
20 |
35 |
В том числе: трансформаторы другие элементы |
15 |
12 8 |
27 8 |
Итого |
70 |
30 |
100 |
Проведение активной энерго- и топливосберегающей политики ставит в качестве одной из важнейших задачу снижения технологического расхода электроэнергии на ее транспорт. Наиболее существенные результаты достигаются за счет рационального построения сети с сокращением количества ступеней трансформации при передаче и распределении электроэнергии от источников к потребителям.
Указанное может характеризоваться обобщенным коэффициентом трансформации мощности, т. е. установленной мощностью трансформаторов, приходящейся на один кВт мощности генераторов электростанций. Этот коэффициент выражает количество ступеней трансформации мощности в электрической сети. За последние 30 лет обобщенный коэффициент трансформации непрерывно возрастал, что свидетельствует о преобладании тенденции освоения новых номинальных напряжений над тенденцией использования глубоких вводов (табл. 2.18).
Таблица 2.18
Обобщенные коэффициенты трансформации мощности, кВ·А/кВт
Годы |
Напряжение электрической сети, кВ |
|||
110-150 |
220-330 |
500ивышз |
Всего в сети |
|
СССР |
||||
1970 |
1,14 |
0,51 |
0,13 |
1,78 |
1980 |
1,20 |
0,76 |
0,26 |
2,22 |
1990 |
1,21 |
0,93 |
0,40 |
2,54 |
Россия |
||||
2000 |
1,21 |
1,04 |
0,53 |
2,78 |